Archives

stepper.setMaxSpeed : Clé du Contrôle de Vitesse dans AccelStepper pour moteur pas à pas

.

Dans cette vidéo, nous explorons des fonctionnalités avancées de la bibliothèque AccelStepper pour Arduino, en mettant l’accent sur la fonction stepper.setMaxSpeed(). Cette fonction est essentielle pour contrôler avec précision la vitesse d’un moteur pas-à-pas. Nous expliquons comment elle permet d’ajuster dynamiquement la vitesse maximale du moteur, offrant ainsi un contrôle fin et réactif, adapté à une multitude d’applications.

Sommaire : 

.

Vous apprendrez que, bien que setMaxSpeed() définisse la vitesse cible, la vitesse réelle peut être influencée par d’autres facteurs, tels que la charge du moteur et la tension d’alimentation. De plus, nous explorerons l’interaction entre setMaxSpeed() et setAcceleration(), montrant comment ces deux fonctions travaillent de concert pour assurer un démarrage et un arrêt en douceur du moteur, évitant ainsi les saccades et garantissant un mouvement fluide.

Ce contrôle précis de la vitesse est particulièrement crucial dans des domaines tels que la robotique de précision, les imprimantes 3D et les équipements automatisés, où la régularité du mouvement influence directement la qualité du résultat.

En lien avec le code fourni, nous démontrerons comment la vitesse du moteur est ajustée en temps réel via un potentiomètre, offrant un contrôle interactif et adaptable, crucial pour des applications nécessitant une réponse rapide et précise. Cette vidéo est une ressource pour tous ceux qui cherchent à comprendre et à maîtriser le contrôle des moteurs pas-à-pas dans leurs projets de robotique et d’automatisation.

.
Quels détails techniques caractérisent la méthode stepper.setMaxSpeed dans Arduino ?

La méthode stepper.setMaxSpeed dans Arduino définit la vitesse maximale du moteur pas-à-pas en pas par seconde. Les développeurs l’utilisent pour un contrôle précis de la vitesse, crucial dans des applications comme les imprimantes 3D. La vitesse doit correspondre aux capacités du moteur. Une vitesse trop élevée risque de provoquer des sauts de pas. Le pilote de moteur influe aussi sur la vitesse maximale. On appelle généralement cette méthode en début de programme ou avant un mouvement spécifique. Elle fonctionne bien avec stepper.setAcceleration et stepper.moveTo.

↩️

.
Pouvez-vous résumer comment intégrer stepper.setMaxSpeed dans un programme Arduino pour contrôler un moteur pas-à-pas ?

Incluez la bibliothèque AccelStepper. Initialisez ensuite le moteur avec AccelStepper stepper. Définissez la vitesse maximale avec stepper.setMaxSpeed(valeur). Utilisez stepper.run() pour activer le mouvement. Adaptez la vitesse selon le projet.

↩️

.

Quel paramètre faut-il fournir à stepper.setMaxSpeed et comment est-il mesuré ?

Pour la méthode stepper.setMaxSpeed, le paramètre nécessaire est la vitesse maximale du moteur. Cette vitesse est mesurée en ‘pas par seconde’ (pps), une unité indiquant combien de pas individuels le moteur peut faire en une seconde. La valeur doit être un nombre positif, adaptée aux spécifications techniques du moteur pour assurer un fonctionnement optimal et sécurisé.

↩️

.

.

Pour tout problème de téléchargement ou pour nous suivre sur les réseaux sociaux voici les plateformes  sur lesquelles nous éditons.
Cliquez sur celles qui vous intéressent .

Facebook Twitter Youtube 

Grabcad Thingiverse Cults  

Retour au menu tuto
Arduino et moteurs pas à pas : Découverte de la bibliothèque AccelStepper

.

Dans ce tutoriel, nous présentons comment contrôler un moteur pas à pas à l’aide des drivers TB6600, DM542 ou DM860, en association avec une carte Arduino, en mettant en avant quelques fonctions spécifiques de la librairie AccelStepper. Grâce à cette dernière, notre code permet à l’utilisateur d’ajuster la vitesse du moteur via un potentiomètre, de démarrer ou arrêter le moteur via des boutons, et d’obtenir des retours visuels grâce à deux LEDs, illustrant l’état de fonctionnement du moteur et sa phase d’accélération.

Découverte et utilité de la librairie AccelStepper :

La librairie AccelStepper dépasse la simple commande d’un moteur pas à pas. Elle propose une gamme étendue de fonctionnalités, mais ce tutoriel n’en aborde certaines que superficiellement. Par exemple, cette librairie autorise un contrôle précis de l’accélération, elle gère minutieusement les mouvements et elle est compatible avec de nombreux pilotes de moteurs. Nous démontrons dans ce tutoriel comment utiliser AccelStepper pour simplifier et enrichir le pilotage d’un moteur pas à pas, en modifiant sa vitesse selon la position d’un potentiomètre ou en lançant une série de mouvements avec une seule commande.

Pour aller plus loin dans la découverte de cette librairie et explorer ses nombreuses autres fonctionnalités, nous vous recommandons vivement de consulter notre chaîne YouTube. Vous y trouverez une multitude de tutoriels et d’applications diverses centrées sur la librairie AccelStepper, vous offrant une compréhension approfondie et des idées pour vos futurs projets.

Bonus : Sur cette page, vous avez également la possibilité de télécharger directement le code présenté dans ce tutoriel. N’hésitez pas à le récupérer pour vous familiariser avec sa structure et ses commandes.

Ces fonctions sont les principales méthodes de la bibliothèque AccelStepper utilisées dans notre code pour contrôler le moteur pas à pas.

  • AccelStepper::DRIVER: Il s’agit d’un mode de fonctionnement pour le pilote du moteur pas à pas. Cela indique à la bibliothèque qu’on utilise un pilote externe (comme le TB6600) pour contrôler le moteur, et qu’on ne fait que lui fournir des signaux de step et de direction.

  • stepper(AccelStepper::DRIVER, pinPULS, pinDIR) : Ceci est le constructeur de la classe AccelStepper qui initialise un nouvel objet pour contrôler un moteur pas à pas. Ici, on lui indique le mode de fonctionnement et les pins pour les signaux de step et de direction.

  • stepper.setMaxSpeed(speed) : Cette fonction définit la vitesse maximale à laquelle le moteur peut tourner.
  • stepper.setAcceleration(50) : Cette fonction définit la valeur d’accélération pour le moteur.
  • stepper.moveTo(stepper.currentPosition() + 1000000) : Cette fonction demande au moteur de se déplacer vers une position donnée. Ici, il est demandé au moteur de se déplacer d’un grand nombre de pas depuis sa position actuelle.
  • stepper.setCurrentPosition(0) : Cette fonction réinitialise la position actuelle du moteur à une valeur donnée, dans ce cas, zéro.
  • stepper.stop() : Cette fonction arrête immédiatement le moteur.
  • stepper.run() : Cette fonction doit être appelée régulièrement pour faire tourner le moteur. Elle prend en compte la vitesse, l’accélération, et la position cible pour déterminer les étapes à effectuer.

 

Facebook Twitter Youtube

Grabcad Thingiverse Cults